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Keywords:   
Introduction  

Every time people have been trying to make their life structured 
and organized with the help of legal system, bureaucracy and organization 
charts. Yet, the world is not orderly, nature is not orderly nor the human 
created institutions like capital market. But we do not understand how they 
work. Financial economists have been dominated by a linear paradigm that 
is for every action there is a proportionate reaction. The markets are rarely 
so orderly; there is an exponential over reaction to action. This type of 
characteristics leads a system far from equilibrium which does not fit the 
Efficient Market Hypothesis (EMH) which has dominated quantitative 
investment finance.  
Objective of the Study 

Predicting the future is always a fascinating adventure and such 
attempts has been made more in respect of stock prices than any other 
branch of finance. The predictions of stock price movements have been 
made on traditional statistical forecasting methods for many decades. 
Linear models have been the basis of such traditional statistical 
forecasting. In the absence of exact knowledge of laws governing 
fluctuations in financial markets, the accuracy of such prediction depends 
on the discovery of empirical regularities in the financial time series. 

What has been realized after many attempts is that several 
variables that determine stock prices are not independent, but are quite 
often dependent and the time when a particular variable starts moving in 
one direction or the other is uncertain. Moreover there seems to be no 
regularity in changes in price due to change in other variables and price 
movements in the market resembles chaos. The problem, therefore, is to 
find the chaotic nature of the stock market.    

To begin with, the relation of current prices to future prices will not 
be linear but non-linear. This non-linearity implies that past price changes 
can have wide ranging effects on future prices. Probably, the apparent 
complexity in the stock market may be due to non-linear interaction 
between several significant variables. Therefore, it would be appropriate to 
understand the nature of the stock market using chaos theory.  

The motivation for undertaking this study is not only the dearth of 
research in this domain but also the potential implications of such a study 
for players in this market. The objective of this paper is to measure the 
sensitive dependence upon initial conditions, which is a characteristic of 
chaotic behavior. The sensitive dependence on initial condition can be 
explained using Lyapunov exponent. 

EMH utilizes statistical methods developed by Louis Bachelier 
back in 1900. This hypothesis assumes that stocks are priced so that all 
public information, both fundamental and price history, is already 
discounted. Prices, therefore, move only when new information is received. 
An efficient market cannot be gamed because not only the prices reflect 
known information, but the large number of investors will ensure that the 
prices are fair. Thus EMH assumes that investors are rational, orderly and 
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tidy. They are risk averse and require mean/variance 
(risk return) efficiency. They know, in a collective 
sense, what information is important and what is not. 
Then after digesting the information and assessing 
the risk involved, the collective consciousness of the 
markets finds an equilibrium price. This hypothesis 
holds that it is impossible to make a profit through 
trading strategies in the long run. Prices only change 
due to unexpected news but are immediately 
arbitraged away by investors until a stable state of 
equilibrium is reached.  

After EMH, Modern Portfolio Theory (MPT) 
was developed by Markowitz (1952). He made the 
distribution of possible returns, as measured by its 
variance, the measure of riskiness of the portfolio. 
Formally, the variance is defined by the following 
formula: 

 
 
 
 
 
 
 
 
 
Using the variance requires that the returns 

be normally distributed. However, if stock returns 
follow a random walk and are IID (Independent, 
Identically distributed) random variables, then the 
Central Limit Theorem of calculus (or the Law of 
Large Numbers) states that the distribution would be 
normal and variance would be finite. Investors would 
thus desire the portfolio with the highest expected 
return for a given level of risk. Investors were 
expected to be risk-averse. This approach became 
known as mean/variance efficiency. 

 
The curve shown in Figure 1 shows the highest level 
of expected return for a given level of risk or standard 
deviation. Investors would prefer these optimal 
portfolios, based on the rational investor model.  
 These concepts were extended by Sharpe 
(1964), Litner (1965), and Mossin (1966) in what 
came to be known as the Capital Asset Pricing Model 
(CAPM), the name coined by Sharpe. The CAPM 

combined the EMH and Markowitz mathematical 
model of portfolio theory into a model of investor 
behaviour based on rational expectations that is; they 
interpreted the information in the same manner. The 
CAPM was a remarkable advance. The CAPM begins 
by assuming that we live in a world free of transaction 
costs, commissions and taxes. Next, CAPM assumes 
that everyone can borrow and lend at a risk-free rate 
of interest, which is usually interpreted as the 90-day 
T-Bill rate. Finally, it assumes that all investors desire 
Markowitz mean/variance efficiency that they want the 
portfolio with the highest level of expected returns for 
a given level of risk and are risk-averse. Risk is again 
defined as the standard deviation of returns.  
 Based on these assumptions, the CAPM 
goes on to draw a number of conclusions about 
investor behaviour. First, the optimal portfolio for all 
investors would be combination of the market portfolio 
and the risk less asset. This type of portfolio is shown 
in Figure 2. 

 
In above figure a line is tangent to the 

efficient frontier at the market portfolio (M) and the Y-
intercept, which is the risk – free rate(r). Levels of risk 
can be adjusted by adding to the risk less asset, to 
reduce the standard deviation of the portfolio. The 
portfolios that lie along this line, called the Capital 
Market Line (CML), dominate the portfolios on the 
efficient frontier; investors would prefer these 
portfolios to all others. In addition, investors are not 
compensated for assuming non market risk because 
the optimal portfolios are along the CML. The model 
also states that assets with higher risk should be 
compensated by higher returns. The risk is now 
relative to the market portfolio, a linear measure of the 
sensitivity of the security risk to the market risk is 
used. The linear measure is called beta. If all risky 
assets were plotted on a graph of their betas versus 
their expected returns, the result would be a straight 
line that intercepts the Y-axis at the risk – free rate of 
interest and passes through the market portfolio.  

This result, called the Security Market Line 
(SML), as shown in Figure. 3.  
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Figure 3: The Security Market Line 

 
The CAPM, which made quantitative methods 
practical, remains the standard for any new model of 
investor behaviour. Markowitz portfolio theory 
explained why diversification reduced risk. The CAPM 
explained how investors would behave, if they were 
rational. The CAPM underlying assumptions, which 
were simplifying assumptions, did not detract from the 
usefulness of the model. The merger of the EMH with 
CAPM and its modifications came to be generally 
known as Modern Portfolio Theory (MPT). This theory 
is based on a linear view of society. In this view 
people see information and adjust to it immediately 
and securities do so through their betas, which are the 
slope of a linear regression between a stock and the 
market portfolios excess returns. The linear paradigm 
is built into normality assumption.  
  Mathematically, this is a very clean 
model; however, it uses linear tools to model a non 
linear world. Much of our world involves non linear 
structures such as clouds, mountains and trees. 
Nature itself is non linear and rarely takes on a pattern 
of linear growth and development. In the past, it made 
sense for economists to use these linear methods of 
modeling and forecasting for financial markets: they 
were constrained by limitations in technology and 
vision. This lead early economists and 
mathematicians to rely on Euclidean objects as their 
tools of analysis: lines, planes etc.  Hence, before the 
advent of computers, this oversimplification of market 
conditions was necessary to develop equations that 
could be solved by hand. When computers came 
along, however, it would become possible to model 
complex systems without relying on simplified 
assumptions. By the 1970s, non linear methods of 
analysis had been introduced in many fields of study 
including physics, biology, chemistry, electrical – 
engineering and sociology; however, although 
financial markets seemed to exhibit many non linear 
tendencies, they were not accepted into the financial 
investment community. On rationale for this 
resistance is that acceptance of a new paradigm 
would through out more than 50 years of work and 
such disruptions would completely change the way 
analysts conducted their business. Analysts‟ only 
recourses were to continuously introduce additional 
theories and variations of the EMH to explain market 
inconsistencies. The only problem was that the 

backbone of these new theories relied heavily on the 
correctness of the EMH. But the EMH was far from 
correct.  
 The development of the EMH was flawed 
from the beginning. First, a model was developed by 
making broad assumptions such as normal 
distributions of returns and the concept of a rational 
investor. Afterwards, the facts were presented in such 
a way so as to conform and thus support this model. 
This is just like putting the cart before the horse – it 
just does not work.  The correct approach is to view 
the facts as they are, then find a theory which seems 
to fit them. From the evidence, the markets definitely 
take on many non linear characteristics which the 
EMH can not explain. These characteristics are as 
follows:- 
1. People are not necessarily risk-averse at all 

times. They can often be risk-seeking, 
particularly if they are faced with what are 
perceived to be sure losses for not gambling.  

2. People are biased when they set subjective 
probabilities. They are likely to be more 
confident in their forecasts than in warranted by 
the information they have.  

3. People may not react to information as it is 
received. Instead, they may react to it after it is 
received, if it confirms a change in a recent 
trend. This is a non-linear reaction, as opposed 
to the linear reaction predicted by the rational 
investor concept.  

4. There is no evidence to support the belief that 
people in aggregate are more rational than 
individuals.  

The Capital-Asset Pricing Model As A Logistic 
Equation 

The capital-asset pricing model equation is: 

E(R) =  +  E(Rm). It says the expected return on a 
stock, E(R), is proportional to the return on the 
market, E(Rm). The input is E(Rm). We multiply it by 

 (“beta”), then add  (“alpha”) to the result – to get 
the output E(R). Chaotic systems are very sensitive to 

initial conditions. Suppose we have the following 
simple system (called a logistic equation) with a single 
variable, appearing as input, x(n), and output x(n+1). 
x(n+1) = a*x(n)  (Buyer‟s effect) where a is the 
particular rate at which demand by buyer causes the 
price to rise. The seller‟s effect is that when prices 
increases at a*x(n), seller reduces the price at a*x

2
(n). 

Therefore output is x(n+1) = a*x(n)-a*x
2
(n); x(n+1) = 

a*x(n)* [1-x(n)] where 0<x(n)≤1 and 0<a≤4 after that 

value of x(n+1) turns to be negative and prices can 
not be negative. Let x(n) = .75. The output is 4(.75) [1-
.75] =.75. That is x(n+1) = .75. If this were an 
equation describing the price behaviour of a market, 
the market would be in equilibrium, because today‟s 
price (.75) would generate the same price tomorrow. If 
x(n) and x(n+1) were expectations, they would be 
self-fulfilling.  Given today‟s price of x(n) = .75, 
tomorrow‟s price will be x(n+1) = .75. The value of .75 
is called a fixed point of the equation, because using 

it as an input returns it as an output. It stays fixed, and 
doesn‟t get transformed into a new number. But, 
suppose the market starts out at x(0) = .7499. The 
output is 4(.7499) [1-.7499] = .7502 = x(1). Now using 
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the previous day‟s output x(1) = .7502 as the next 
input, we get as the new output: 4(.7502) [1-.7502] = 
.7496 = x(2). And so on. Going from one set of inputs 
to an output is called iteration. Then, in the next 

iteration, the new output value is used as the input 
value, to get another output value. Each set of 
solution paths – x(n), x(n+1), x(n+2), etc. – are called 
trajectories. The 100 iterations of the logistic equation, 
starting with x(0) = .7499 and x(0) = .74999 are shown 
in Table 1 (Annexure I). Clearly a small change in the 
initial starting value causes a large change in the 
outcome after a few steps. The equation is very 
sensitive to initial conditions. 

 Let  denote the error in our initial 
observation, or the difference in two initial conditions. 
In Table 1, it could represent the difference between 
.75 and .7499 or between .75 and .74999.  Let R be a 
distance (plus or minus) around a reference trajectory 
and then there is a question: how quickly does a 

second trajectory – which includes the error  - get 
outside the range R? The answer is a function of the 
number of steps n, and the Lyapunov exponent 

(lemda), according to the following equation (where 
“exp” means the exponential e = 2.7182818…, the 

basis of the natural logarithms): R =   exp( n).  

The Lyapunov exponent for an equation 
f(x(n)) is the average absolute value of the natural 
logarithm(log) of its derivatives: λ=Σ(1/n) log|df/dx(n)| 

For example, the derivative of the right-hand 
side of the logistic equation x(n+1)=4 x(n) [1-x(n)]=4 
x(n) – 4 x

2 
(n) is 4-8 x(n). Thus for the first iteration of 

the second trajectory in Table 1, where x(n) = .7502, 
we have |df/dx(n)| = | 4[1-2(.7502)]| =2.0016 and log 
(2.0016) =.6939.If we sum over this and subsequent 
values, and take the average , we have the Lyapunov 
Exponent. Even we can start with x(0) = .1 and obtain 
the Lyapunov exponent. This is done in Table 2 
(Annexure I). 

In Table 2 only after ten iterations the 
empirically calculated Lyapunov exponent is .697226, 
near to its value of .6939.Thus the Lyapunov 

exponent of the logistic equation is  = .697226. So in 

this instance, we have R =   exp(.697226 n). 
Sample Calculations Using a Lyapunov Exponent 

In Table 1 we used starting values of .75, 
.7499 and .74999.  That is, with a slightly different 
starting value, how many steps does it take before the 
system departs from the interval (.75, .76)?  In this 
case the distance R = .01. For the second trajectory, 
with a starting value of .7499, the change in the initial 

condition is  = .0001 (that is,  = 75 - .7499). Hence, 

applying the equation R =   exp ( n), we have .01 = 
.0001 exp (.697226 n). Solving for n, we get n = 6.64.  

We see that for n = 7 (the 7
th
 iteration), the value is 

x(7) = .762688, and that this is the first value that has 
gone outside the interval (.75, .76). Similarly, for the 
third trajectory, with a starting value of .74999, how 
many steps does it take before the system departs 
from the interval (.74, .75)? In this case the distance R 

=.01.   Applying the equation R =   exp ( n) yields 
.01 = .00001 exp (.697226 n).  Which solves to n = 

9.96.  We see that for n = 10 (the 10
th

 iteration), we 
have x(10) = .739691 and this is the first value outside 
the interval (.74, .75)for this trajectory. In this sample 

calculation, the system diverges because the 
Lyapunov exponent is positive. If it were the case the 

Lyapunov exponent were negative,  <  

0, then exp ( n) would get smaller with each 

step. So it must be the case that  > 0 for the system 
to be chaotic. The particular logistic equation, x(n+1) 
= 4 x(n) [1-x(n)], which we used is a simple equation 
with only one variable, namely x(n).  So it has only 
one Lyapunov exponent. In general, a system with M 
variables may have as many as M Lyapunov 

exponents. In that case, an attractor is chaotic if at 
least one of its Lyapunov exponents is positive. 
Conclusion 

The earlier approaches to model the stock 
prices movements were using the linear models and 
accepting the normal distribution assumption. Of late, 
it is largely accepted that the assumption of normality 
and linearity are too weak to capture the intricacies in 
the movements of stock prices as in the case with 
most of the economic time series. The successful 
application of non- linear models by the peers of 
physical and natural sciences to explain several 
(seemingly random) phenomenons provoked the 
economists and financial analysts to assemble non 
linear models for stock market. What has been 
realized after many attempts is that several variables 
that determine stock prices are not independent, but 
are quite often dependent and the time when a 
particular variable starts moving in one direction or the 
other is uncertain. Moreover, there seems to be no 
regularity in changes in price due to change in other 
variables and price movements in the market 
resembles chaos. Furthermore, these patterns are not 
easily evident and are often masked by noise. The 
problem, therefore, is to find order in the chaotic 
nature of the stock market.  Tests of fractals, chaos 
and other non-linear structures in financial markets 
analyze whether stock prices have some degree of 
auto dependency on their own past movements. In 
this context, auto dependency would mean that past 
stock prices, for example, could be used to determine 
the behavior of future stock prices. If a series has a 
certain degree of non-linear auto dependency, it will 
generate complex behavior. Precisely, the fractal and 
chaotic tests can describe it adequately. In short 
„chaos‟ makes a neat connection with common 
experience. The gradual realization that chaos is 
relevant to such a wide range of subjects and 
provides a rich field for new research initiatives is 
certainly a factor in its recent establishment as one of 
the „trendy‟ academic areas. 
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Annexure I 
Table 1: First One Hundred Iterations of the Equation x(n+1) = 4x(n) [1-x(n)] with different values of x(0) 

x(0) 0.75 0.7499 0.74999 

1 0.75 0.7502 0.75002 

2 0.75 0.7496 0.74996 

3 0.75 0.7508 0.75008 

4 0.75 0.748398 0.74984 

5 0.75 0.753193 0.75032 

6 0.75 0.743573 0.74936 

7 0.75 0.762688 0.751279 

8 0.75 0.72398 0.747436 

9 0.75 0.799332 0.755102 

10 0.75 0.641601 0.739691 

11 0.75 0.919796 0.770193 

12 0.75 0.295084 0.707984 

13 0.75 0.832038 0.826971 

14 0.75 0.559002 0.57236 

15 0.75 0.986075 0.979056 

16 0.75 0.054924 0.08202 

17 0.75 0.207628 0.30117 

18 0.75 0.658075 0.841867 

19 0.75 0.900049 0.532507 

20 0.75 0.359844 0.995773 

21 0.75 0.921426 0.016836 

22 0.75 0.289602 0.06621 

23 0.75 0.82293 0.247305 

24 0.75 0.582864 0.744581 

25 0.75 0.972534 0.76072 

26 0.75 0.106845 0.728099 

27 0.75 0.381716 0.791883 

28 0.75 0.944036 0.659218 

29 0.75 0.211329 0.898598 

30 0.75 0.666675 0.364478 

31 0.75 0.888878 0.926535 

32 0.75 0.395097 0.272271 
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33 0.75 0.955981 0.792559 

34 0.75 0.168324 0.657638 

35 0.75 0.559965 0.900602 

36 0.75 0.985617 0.358074 

37 0.75 0.056705 0.919428 

38 0.75 0.213956 0.296322 

39 0.75 0.672716 0.834061 

40 0.75 0.880676 0.553614 

41 0.75 0.420342 0.988502 

42 0.75 0.974618 0.045463 

43 0.75 0.09895 0.173583 

44 0.75 0.356635 0.573809 

45 0.75 0.917786 0.978209 

46 0.75 0.301821 0.085265 

47 0.75 0.8429 0.311979 

48 0.75 0.529679 0.858592 

49 0.75 0.996477 0.485646 

50 0.75 0.014044 0.999176 

51 0.75 0.055386 0.003294 

52 0.75 0.209273 0.013132 

53 0.75 0.661911 0.051837 

54 0.75 0.895139 0.196601 

55 0.75 0.375462 0.631796 

56 0.75 0.937961 0.930519 

57 0.75 0.232761 0.258613 

58 0.75 0.714334 0.76693 

59 0.75 0.816243 0.714994 

60 0.75 0.599961 0.81511 

61 0.75 0.960031 0.602824 

62 0.75 0.153485 0.957709 

63 0.75 0.51971 0.162009 

64 0.75 0.998446 0.543049 

65 0.75 0.006206 0.992587 

66 0.75 0.02467 0.029431 

67 0.75 0.096247 0.114261 

68 0.75 0.347933 0.404822 

69 0.75 0.907503 0.963765 

70 0.75 0.335767 0.139689 

71 0.75 0.89211 0.480705 

72 0.75 0.385 0.998511 

73 0.75 0.9471 0.005948 

74 0.75 0.200407 0.02365 

75 0.75 0.640977 0.092363 

76 0.75 0.920502 0.335328 

77 0.75 0.292712 0.891533 

78 0.75 0.828127 0.386809 

79 0.75 0.56933 0.948751 

80 0.75 0.980773 0.19449 

81 0.75 0.075428 0.626655 

82 0.75 0.278955 0.935834 
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83 0.75 0.804557 0.240196 

84 0.75 0.62898 0.730008 

85 0.75 0.933457 0.788386 

86 0.75 0.24846 0.667334 

87 0.75 0.74691 0.887998 

88 0.75 0.756142 0.397831 

89 0.75 0.737565 0.958246 

90 0.75 0.774252 0.160042 

91 0.75 0.699143 0.537713 

92 0.75 0.841369 0.994311 

93 0.75 0.533869 0.022627 

94 0.75 0.995411 0.08846 

95 0.75 0.01827 0.32254 

96 0.75 0.071744 0.874032 

97 0.75 0.266388 0.440402 

98 0.75 0.781702 0.985792 

99 0.75 0.682577 0.056024 

100 0.75 0.866663 0.211541 

Table 2: Empirical Calculation of Lyapunov Exponent from the Logistic Equation with x(0) = .1, 

Iteration X(n) = .1 df/dx(n) log|df/dx(n)| 

1 0.36 1.12 0.113329 

2 0.9216 -3.3728 1.215743 

3 0.289014 1.687890 0.523479 

4 0.821939 -2.575514 0.946049 

5 0.585421 -0.683364 -0.380728 

6 0.970813 -3.766507 1.326148 

7 0.113339 3.093286 1.129234 

8 0.401974 0.784209 -0.243079 

9 0.961563 -3.692508 1.306306 

10 0.147837 2.817308 1.035782 

    

    

 Average  0.697226 

 
 

 
 


